Gunter, Jason

From:

Nations, Mark [mnations@doerun.com]

Sent:

Monday, May 13, 2013 2:43 PM

To:

Gunter, Jason

Cc:

England, Jason; Yingling, Mark; Wohl, Matthew; robert.hinkson@dnr.mo.gov; Ty Morris

(TMorris@barr.com)

Subject:

April Monthly Progress Report

Attachments:

LW 04-13.doc; Leadwood NPDES Samples 04-03-13.pdf

Jason,

Attached is the Leadwood Monthly Progress Report.

Mark

This message is intended solely for the designated recipient and may contain confidential, privileged or proprietary information. If you have received it in error, please notify the sender immediately and delete the original and any copy or printout. Please note that any views or opinions presented in this e-mail are solely those of the author and do not necessarily represent those of The Doe Run Company. Finally, the recipient should check this message and any attachments for the presence of viruses or malware. The Doe Run Company accepts no liability for any loss or damage caused through the transmission of this e-mail.

07CR 30290254 4,2 Superfund 0407

Remediation Group

Mark Nations
Mining Properties Manager
mnations@doerun.com

May 13, 2013

Mr. Jason Gunter Remedial Project Manager U.S. Environmental Protection Agency Region 7 - Superfund Branch 11201 Renner Blvd. Lenexa, KS 66219

Re: The Doe Run Company - Leadwood Mine Tailings Site Monthly Progress Report

Dear Mr. Gunter:

As required by Article VI, Section 50 of the Unilateral Administrative Order (Docket No. CERCLA-07-2006-0272) for the referenced project and on behalf of The Doe Run Company, the progress report for the period April 1, 2013 through April 30, 2013 is enclosed. If you have any questions or comments, please call me at 573-518-0800.

Sincerely,

Mark Nations

Mining Properties Manager

Enclosures

c: Jason England - TDRC

Mark Yingling – TDRC (electronic only)

Matt Wohl – TDRC (electronic only)

Robert Hinkson - MDNR

Ty Morris - Barr Engineering

Leadwood Mine Tailings Site

Leadwood, Missouri

Removal Action - Monthly Progress Report

Period: March 1, 2013 - March 31, 2013

1. Actions Performed or Completed This Period:

a. No activities were completed at the site during this period.

2. Data and Results Received This Period:

a. During this period, water samples were collected from downstream of Leadwood Dam and the East Seep and Erosion Area, as well as from upstream and downstream of the confluence of Eaton Creek with Big River. The analytical results for this event are included with this progress report.

The December 2012 Ambient Air Monitoring Report noted the following: - During this period, the Ambient Air Monitoring Report for January 2013 was completed. Any issues identified in this reports are discussed below. A copy of this document has been sent to your attention.

The January 2013 Ambient Air Monitoring Report noted the following:

- The action levels for lead and dust were not exceeded.
- No samples were taken with the TSP and PM10 monitors 01/01/13 due to the holiday.
- The sample for Big River #4 (QA) TSP monitor on 01/24/13 was invalid due to a mechanical failure. Upon discovering the mechanical failure, the issue was addressed.
- The sample for Leadwood #3 (School) TSP monitor on 01/30/13 was invalid due to a mechanical failure. Upon discovering the mechanical failure, the issue was addressed.

3. Scheduled Activities not Completed This Period:

a. None.

4. Planned Activities for Next Period:

- a. Continue vegetation maintenance activities. The use of biosolids will only be continued if a biosolids management plan has been submitted to and approved by EPA.
- b. It is anticipated that EPA will use this site as a soil repository in the future. Preparations for these activities will continue.
- c. Complete monthly water sampling activities as described in the Removal Action Work Plan.
- d. Complete air monitoring activities as described in the Removal Action Work Plan.

5. Changes in Personnel:

a. None.

6. Issues or Problems Arising This Period:

a. None.

7. Resolution of Issues or Problems Arising This Period:

a. None.

End of Monthly Progress Report

April 15, 2013

Allison Olds
Barr Engineering Company
1001 Diamond Ridge
Suite 1100
Jefferson City, MO 65109

TEL: (573) 638-5007 FAX: (573) 638-5001

RE: Leadwood Mine Tailings Site NPDES

Dear Allison Olds:

TEKLAB, INC received 5 samples on 4/4/2013 8:00:00 AM for the analysis presented in the following report.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column. Unless otherwise documented within this report, Teklab Inc. analyzes samples utilizing the most current methods in compliance with 40CFR. All tests are performed in the Collinsville, IL laboratory unless otherwise noted in the Case Narrative.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Michael L. Austin Project Manager (618)344-1004 ex 16 MAustin@teklabinc.com

WorkOrder: 13040249

Report Contents

http://www.teklabinc.com/

Client: Barr Engineering Company Work Order: 13040249

Client Project: Leadwood Mine Tailings Site NPDES Report Date: 15-Apr-13

This reporting package includes the following:

Cover Letter	1
Report Contents	2
Definitions	3
Case Narrative	4
Laboratory Results	5
Sample Summary	10
Dates Report	11
Quality Control Results	13
Receiving Check List	18
Chain of Custody	Appended

Definitions

http://www.teklabinc.com/

Client: Barr Engineering Company Work Order: 13040249

Client Project: Leadwood Mine Tailings Site NPDES Report Date: 15-Apr-13

Abbr Definition

CCV Continuing calibration verification is a check of a standard to determine the state of calibration of an instrument between recalibration.

- DF Dilution factor is the dilution performed during analysis only and does not take into account any dilutions made during sample preparation. The reported result is final and includes all dilutions factors.
- DNI Did not ignite
- DUP Laboratory duplicate is an aliquot of a sample taken from the same container under laboratory conditions for independent processing and analysis independently of the original aliquot.
- ICV Initial calibration verification is a check of a standard to determine the state of calibration of an instrument before sample analysis is initiated.
- IDPH IL Dept. of Public Health
- LCS Laboratory control sample, spiked with verified known amounts of analytes, is analyzed exactly like a sample to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system. The acceptable recovery range is in the QC Package (provided upon request).
- LCSD Laboratory control sample duplicate is a replicate laboratory control sample that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
 - MB Method blank is a sample of a matrix similar to the batch of associated sample (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences should present at concentrations that impact the analytical results for sample analyses.
- MDL Method detection limit means the minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.
- MS Matrix spike is an aliquot of matrix fortified (spiked) with known quantities of specific analytes that is subjected to the entire analytical procedures in order to determine the effect of the matrix on an approved test method's recovery system. The acceptable recovery range is listed in the QC Package (provided upon request).
- MSD Matrix spike duplicate means a replicate matrix spike that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MW Molecular weight
- ND Not Detected at the Reporting Limit
- **NELAP NELAP Accredited**
 - PQL Practical quantitation limit means the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operation conditions. The acceptable recovery range is listed in the QC Package (provided upon request).
 - RL The reporting limit the lowest level that the data is displayed in the final report. The reporting limit may vary according to customer request or sample dilution. The reporting limit may not be less than the MDL.
 - RPD Relative percent difference is a calculated difference between two recoveries (ie. MS/MSD). The acceptable recovery limit is listed in the QC Package (provided upon request).
 - SPK The spike is a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery deficiency or for other quality control purposes.
 - Surr Surrogates are compounds which are similar to the analytes of interest in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples.
- TNTC Too numerous to count (> 200 CFU)

Oualifiers

- # Unknown hydrocarbon
- E Value above quantitation range
- M Manual Integration used to determine area response
- R RPD outside accepted recovery limits
- X Value exceeds Maximum Contaminant Level

- B Analyte detected in associated Method Blank
- H Holding times exceeded
- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside recovery limits

Case Narrative

http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13040249

Client Project: Leadwood Mine Tailings Site NPDES

Report Date: 15-Apr-13

Kansas City

Springfield

Collinsville

Collinsville Collinsville

Collinsville

Collinsville

Collinsville

Cooler Receipt Temp: 1.8 °C

Collinsville

LDEQ

TCEQ

ADEQ

IDPH

UST

MDNR

ODEQ

Louisiana

Arkansas

Kentucky

Missouri

Oklahoma

Illinois

Texas

Locations and Accreditations

Springfield

Address	5445 Horseshoe Lake Road	Address	3920 Pintail Dr		Address	8421 Nieman Road	
	Collinsville, IL 62234-7425		Springfield, IL 62	711-9415		Lenexa, KS 66214	
Phone	(618) 344-1004	Phone	(217) 698-1004		Phone	(913) 541-1998	
Fax	(618) 344-1005	Fax	(217) 698-1005		Fax	(913) 541-1998	
Email	jhriley@teklabinc.com	Email	KKlostermann@te	eklabinc.com	Email	dthompson@teklabinc.com	
State	D	ept	Cert #	NELAP	Exp Date	Lab	
Illinois	IE	EPA	100226	NELAP	1/31/2014	Collinsville	
Kansas	K	DHE	E-10374	NELAP	1/31/2014	Collinsville	
Louisia	ana Li	DEQ	166493	NELAP	6/30/2013	Collinsville	

166578

T104704515-12-1

88-0966

17584

0073

00930

9978

NELAP

NELAP

6/30/2013

7/31/2013

3/14/2014

4/30/2013

4/5/2014

4/13/2013

8/31/2013

http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13040249

Client Project: Leadwood Mine Tailings Site NPDES

Report Date: 15-Apr-13

Lab ID: 13040249-001

Client Sample ID: LW-001

Matrix: SURFACE WATER

Collection Date: 04/03/2013 7:45

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
EPA 600 375.2 REV 2.0 1993	(TOTAL)							
Sulfate	NELAP	100		238	mg/L	10	04/04/2013 14:47	R175513
STANDARD METHOD 4500-H	B, LABORATORY A	NALYZED						
Lab pH	NELAP	1.00		7.85		1	04/08/2013 17:00	R175654
STANDARD METHODS 2540	D							
Total Suspended Solids	NELAP	6		< 6	mg/L	1	04/04/2013 14:06	R175517
STANDARD METHODS 2540	F							
Solids, Settleable	NELAP	0.1		< 0.1	ml/L	1	04/04/2013 11:35	R175507
STANDARD METHODS 5310	C, ORGANIC CARBO	N						
Total Organic Carbon (TOC)	NELAP	1.0		2.4	mg/L	1	04/04/2013 20:00	R175536
EPA 600 4.1.1, 200.7R4.4, ME	ETALS BY ICP (DISSO	LVED)						
Cadmium	NELAP	2.00		2.60	μg/L	1	04/05/2013 4:51	87071
Zinc	NELAP	10.0		2210	μg/L	1	04/05/2013 4:51	87071
EPA 600 4.1.4, 200.7R4.4, ME	TALS BY ICP (TOTAL	_)						
Cadmium	NELAP	2.00		2.90	μg/L	1	04/05/2013 18:44	87095
Zinc	NELAP	10.0		2680	μg/L	1	04/05/2013 18:44	87095
MS QC limits for Ca and Mg are n	ot applicable due to high s	sample/spike r	atio.					
STANDARD METHODS 3030	E, 3113 B, METALS I	BY GFAA						
Lead	NELAP	2.00	X	7.57	μg/L	1	04/10/2013 10:53	87148
STANDARD METHODS 2340	B, HARDNESS (TOTA	AL)						
Hardness, as (CaCO3)	NELAP	1.00		430	mg/L	1	04/05/2013 0:00	R175577
STANDARD METHODS 3030	B, 3113 B, METALS E	BY GFAA (D	ISSOLVE	D)				
Lead	NELAP	2.00	X	6.21	μg/L	1	04/10/2013 12:05	87235

http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13040249

Client Project: Leadwood Mine Tailings Site NPDES

Report Date: 15-Apr-13

Lab ID: 13040249-002

Client Sample ID: LW-002

Matrix: SURFACE WATER

Collection Date: 04/03/2013 8:45

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
EPA 600 375.2 REV 2.0 1993	(TOTAL)							
Sulfate	NELAP	200		461	mg/L	20	04/04/2013 14:52	R175513
STANDARD METHOD 4500-H	B, LABORATORY A	NALYZED						
Lab pH	NELAP	1.00		7.96		1	04/08/2013 17:00	R175654
STANDARD METHODS 2540	D							
Total Suspended Solids	NELAP	6		< 6	mg/L	1	04/04/2013 14:06	R175517
STANDARD METHODS 2540	F							
Solids, Settleable	NELAP	0.1		< 0.1	ml/L	1	04/04/2013 11:35	R175507
STANDARD METHODS 5310	C, ORGANIC CARBO	N						
Total Organic Carbon (TOC)	NELAP	1.0		2.1	mg/L	1	04/04/2013 18:12	R175536
EPA 600 4.1.1, 200.7R4.4, ME	TALS BY ICP (DISSO	LVED)						
Cadmium	NELAP	2.00		2.40	μg/L	1	04/05/2013 5:09	87071
Zinc	NELAP	10.0		3700	μg/L	1	04/05/2013 5:09	87071
EPA 600 4.1.4, 200.7R4.4, ME	TALS BY ICP (TOTAL	L)						
Cadmium	NELAP'	2.00		3.40	µg/L	1	04/05/2013 19:02	87095
Zinc	NELAP	10.0		3920	μg/L	1	04/05/2013 19:02	87095
STANDARD METHODS 3030	E, 3113 B, METALS I	BY GFAA						
Lead	NELAP	2.00	X	10.1	μg/L	1	04/10/2013 10:56	87148
STANDARD METHODS 2340	B, HARDNESS (TOTA	AL)						
Hardness, as (CaCO3)	NELAP	1.00		635	mg/L	1	04/05/2013 0:00	R175577
STANDARD METHODS 3030	B, 3113 B, METALS E	BY GFAA (D	ISSOLVE	(D)				
Lead	NELAP	2.00	X	7.36	μg/L	1	04/10/2013 12:08	87235

http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13040249

Client Project: Leadwood Mine Tailings Site NPDES

Report Date: 15-Apr-13

Lab ID: 13040249-003

Client Sample ID: LW-US

Matrix: SURFACE WATER

Collection Date: 04/03/2013 7:15

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
EPA 600 375.2 REV 2.0 1993	(TOTAL)							
Sulfate	NELAP	10		17	mg/L	1	04/04/2013 15:33	R175513
STANDARD METHOD 4500-H	B, LABORATORY A	NALYZED						
Lab pH	NELAP	1.00		7.96		1	04/08/2013 17:00	R175654
STANDARD METHODS 2540	D							
Total Suspended Solids	NELAP	6		< 6	mg/L	1	04/04/2013 14:13	R175517
STANDARD METHODS 5310	C, ORGANIC CARBO	N						
Total Organic Carbon (TOC)	NELAP	1.0		1.5	mg/L	1	04/04/2013 18:18	R175536
EPA 600 4.1.1, 200.7R4.4, ME	ETALS BY ICP (DISSO	LVED)						
Cadmium	NELAP	2.00		< 2.00	μg/L	1	04/05/2013 5:15	87071
Zinc	NELAP	10.0		< 10.0	μg/L	1	04/05/2013 5:15	87071
EPA 600 4.1.4, 200.7R4.4, ME	TALS BY ICP (TOTAL	-)						
Cadmium	NELAP	2.00		< 2.00	μg/L	1	04/05/2013 19:08	87095
Zinc	NELAP	10.0	1	< 10.0	μg/L	1	04/05/2013 19:08	87095
STANDARD METHODS 3030	E, 3113 B, METALS	BY GFAA						
Lead	NELAP	2.00		< 2.00	μg/L	1	04/10/2013 11:16	87148
STANDARD METHODS 2340	B, HARDNESS (TOTA	AL)						
Hardness, as (CaCO3)	NELAP	1.00		148	mg/L	1	04/05/2013 0:00	R175577
STANDARD METHODS 3030	B, 3113 B, METALS E	Y GFAA (D	ISSOLVE	D)				
Lead	NELAP	2.00		< 2.00	μg/L	1	04/10/2013 12:18	87235

http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13040249

Client Project: Leadwood Mine Tailings Site NPDES

Report Date: 15-Apr-13

Lab ID: 13040249-004

Client Sample ID: LW-DS

Matrix: SURFACE WATER

Collection Date: 04/03/2013 9:25

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
EPA 600 375.2 REV 2.0 1993	(TOTAL)							
Sulfate	NELAP	10	S	21	mg/L	1	04/04/2013 15:38	R175513
MS and/or MSD did not recover w	ithin control limits due to n	natrix interfere	ence.					
STANDARD METHOD 4500-H	B, LABORATORY AN	NALYZED						
Lab pH	NELAP	1.00		8.08		1	04/08/2013 17:00	R175654
STANDARD METHODS 2540	D							
Total Suspended Solids	NELAP	6		< 6	mg/L	1	04/04/2013 14:13	R175517
STANDARD METHODS 5310	C, ORGANIC CARBO	N						
Total Organic Carbon (TOC)	NELAP	1.0		1.5	mg/L	1	04/04/2013 18:24	R175536
EPA 600 4.1.1, 200.7R4.4, MI	TALS BY ICP (DISSO	LVED)						
Cadmium	NELAP	2.00		< 2.00	μg/L	1	04/05/2013 5:21	87071
Zinc	NELAP	10.0		25.3	μg/L	1	04/05/2013 5:21	87071
EPA 600 4.1.4, 200.7R4.4, MI	TALS BY ICP (TOTAL	.)						
Cadmium	NELAP	2.00		< 2.00	μg/L	1	04/05/2013 19:14	87095
Zinc	NELAP	10.0		27.3	μg/L	1	04/05/2013 19:14	87095
STANDARD METHODS 3030	E, 3113 B, METALS E	BY GFAA						
Lead	NELAP	2.00		< 2.00	μg/L	1	04/10/2013 11:20	87148
STANDARD METHODS 2340	B, HARDNESS (TOTA	L)						
Hardness, as (CaCO3)	NELAP	1.00		154	mg/L	1	04/05/2013 0:00	R175577
STANDARD METHODS 3030	B, 3113 B, METALS B	Y GFAA (D	ISSOLVE	D)				
Lead	NELAP	2.00		< 2.00	μg/L	1	04/10/2013 12:21	87235

http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13040249

Client Project: Leadwood Mine Tailings Site NPDES

Report Date: 15-Apr-13

Lab ID: 13040249-005

Client Sample ID: LW-DUP

Matrix: SURFACE WATER

Collection Date: 04/03/2013 0:00

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
EPA 600 375.2 REV 2.0 1993	(TOTAL)							
Sulfate	NELAP	10		17	mg/L	1	04/05/2013 18:15	R175597
STANDARD METHOD 4500-H	B, LABORATORY AI	NALYZED						
Lab pH	NELAP	1.00		7.91		1	04/05/2013 21:29	R175587
STANDARD METHODS 2540	D							
Total Suspended Solids	NELAP	6		< 6	mg/L	1	04/04/2013 14:13	R175517
STANDARD METHODS 5310	C, ORGANIC CARBO	N						
Total Organic Carbon (TOC)	NELAP	1.0		1.4	mg/L	1	04/04/2013 18:31	R175536
EPA 600 4.1.1, 200.7R4.4, ME	TALS BY ICP (DISSO	LVED)						
Cadmium	NELAP	2.00		< 2.00	μg/L	1	04/05/2013 5:27	87071
Zinc	NELAP	10.0		< 10.0	μg/L	1	04/05/2013 5:27	87071
EPA 600 4.1.4, 200.7R4.4, ME	TALS BY ICP (TOTAL	_)						
Cadmium	NELAP	2.00		< 2.00	μg/L	1	04/05/2013 19:20	87095
Zinc	NELAP	10.0		< 10.0	μg/L	1	04/05/2013 19:20	87095
STANDARD METHODS 3030	E, 3113 B, METALS I	BY GFAA						
Lead	NELAP	2.00		< 2.00	μg/L	1	04/10/2013 11:23	87148
STANDARD METHODS 2340	B, HARDNESS (TOTA	AL)						
Hardness, as (CaCO3)	NELAP	1.00		144	mg/L	1	04/05/2013 0:00	R175577
STANDARD METHODS 3030	B, 3113 B, METALS E	Y GFAA (E	ISSOLVE	D)				
Lead	NELAP	2.00		< 2.00	μg/L	1	04/10/2013 12:25	87235

Sample Summary

http://www.teklabinc.com/

Work Order: 13040249

Report Date: 15-Apr-13

Client: Barr Engineering Company

Client Project: Leadwood Mine Tailings Site NPDES

Lab Sample ID	Client Sample ID		Matrix	Fractions	Collection Date
13040249-001	LW-001	S	Surface Water	5	04/03/2013 7:45
13040249-002	LW-002	S	Surface Water	5	04/03/2013 8:45
13040249-003	LW-US	S	Surface Water	5	04/03/2013 7:15
13040249-004	LW-DS	S	Surface Water	5	04/03/2013 9:25
13040249-005	LW-DUP	S	Surface Water	5	04/03/2013 0:00

Dates Report

http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13040249

Client Project: Leadwood Mine Tailings Site NPDES

Sample ID	Client Sample ID	Collection Date	Received Date		
	Test Name	81383994584985496591858429884918945849	AC 94009 JULY 0453 94004 VID 2000 VID	Prep Date/Time	Analysis Date/Time
13040249-001A	LW-001	04/03/2013 7:45	04/04/2013 8:00		
	Standard Methods 2540 F				04/04/2013 11:35
13040249-001B	LW-001	04/03/2013 7:45	04/04/2013 8:00		
	EPA 600 375.2 Rev 2.0 1993 (Total)				04/04/2013 14:47
	Standard Method 4500-H B, Laboratory Analyzed				04/08/2013 17:00
	Standard Methods 2540 D				04/04/2013 14:06
13040249-001C	LW-001	04/03/2013 7:45	04/04/2013 8:00		
	EPA 600 4.1.4, 200.7R4.4, Metals by ICP (Total)			04/04/2013 19:08	04/05/2013 18:44
	Standard Methods 3030 E, 3113 B, Metals by GFAA			04/05/2013 18:02	04/10/2013 10:53
	Standard Methods 2340 B, Hardness (Total)				04/05/2013 0:00
13040249-001D	LW-001	04/03/2013 7:45	04/04/2013 8:00		
	EPA 600 4.1.1, 200.7R4.4, Metals by ICP (Dissolved)	MA OF BUILDING STREET		04/04/2013 12:19	04/05/2013 4:51
	Standard Methods 3030 B, 3113 B, Metals by GFAA (Dissolved)		04/08/2013 22:45	04/10/2013 12:05
13040249-001E	LW-001	04/03/2013 7:45	04/04/2013 8:00		
	Standard Methods 5310 C, Organic Carbon				04/04/2013 20:00
13040249-002A	LW-002	04/03/2013 8:45	04/04/2013 8:00		etaristi eta pelettari
	Standard Methods 2540 F			•	04/04/2013 11:35
13040249-002B	LW-002	04/03/2013 8:45	04/04/2013 8:00		
	EPA 600 375.2 Rev 2.0 1993 (Total)				04/04/2013 14:52
	Standard Method 4500-H B, Laboratory Analyzed				04/08/2013 17:00
	Standard Methods 2540 D				04/04/2013 14:06
13040249-002C	LW-002	04/03/2013 8:45	04/04/2013 8:00		
	EPA 600 4.1.4, 200.7R4.4, Metals by ICP (Total)			04/04/2013 19:08	04/05/2013 19:02
	Standard Methods 3030 E, 3113 B, Metals by GFAA			04/05/2013 18:02	04/10/2013 10:56
	Standard Methods 2340 B, Hardness (Total)				04/05/2013 0:00
13040249-002D	LW-002	04/03/2013 8:45	04/04/2013 8:00		
	EPA 600 4.1.1, 200.7R4.4, Metals by ICP (Dissolved)			04/04/2013 12:19	04/05/2013 5:09
	Standard Methods 3030 B, 3113 B, Metals by GFAA (Dissolved)		04/08/2013 22:45	04/10/2013 12:08
13040249-002E	LW-002	04/03/2013 8:45	04/04/2013 8:00		
	Standard Methods 5310 C, Organic Carbon				04/04/2013 18:12
13040249-003A	LW-US	04/03/2013 7:15	04/04/2013 8:00		
	Standard Methods 2540 D				04/04/2013 14:13
13040249-003B	LW-US	04/03/2013 7:15	04/04/2013 8:00		
	EPA 600 375.2 Rev 2.0 1993 (Total)				04/04/2013 15:33
	Standard Method 4500-H B, Laboratory Analyzed				04/08/2013 17:00
13040249-003C	LW-US	04/03/2013 7:15	04/04/2013 8:00		

Dates Report

http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13040249

Client Project: Leadwood Mine Tailings Site NPDES

Sample ID	Client Sample ID	Collection Date	Received Date		
	Test Name			Prep Date/Time	Analysis Date/Time
	EPA 600 4.1.4, 200.7R4.4, Metals by ICP (Total)			04/04/2013 19:08	04/05/2013 19:08
	Standard Methods 3030 E, 3113 B, Metals by GFAA			04/05/2013 18:02	04/10/2013 11:16
	Standard Methods 2340 B, Hardness (Total)				04/05/2013 0:00
13040249-003D	LW-US	04/03/2013 7:15	04/04/2013 8:00		
encencementencementen _e c	EPA 600 4.1.1, 200.7R4.4, Metals by ICP (Dissolved)			04/04/2013 12:19	04/05/2013 5:15
	Standard Methods 3030 B, 3113 B, Metals by GFAA (Dissolved)		04/08/2013 22:45	04/10/2013 12:18
13040249-003E	LW-US	04/03/2013 7:15	04/04/2013 8:00		
	Standard Methods 5310 C, Organic Carbon				04/04/2013 18:18
13040249-004A	LW-DS	04/03/2013 9:25	04/04/2013 8:00		
	Standard Methods 2540 D				04/04/2013 14:13
13040249-004B	LW-DS	04/03/2013 9:25	04/04/2013 8:00		
	EPA 600 375.2 Rev 2.0 1993 (Total)				04/04/2013 15:38
	Standard Method 4500-H B, Laboratory Analyzed				04/08/2013 17:00
13040249-004C	LW-DS	04/03/2013 9:25	04/04/2013 8:00		
	EPA 600 4.1.4, 200.7R4.4, Metals by ICP (Total)			04/04/2013 19:08	04/05/2013 19:14
	Standard Methods 3030 E, 3113 B, Metals by GFAA			04/05/2013 18:02	04/10/2013 11:20
	Standard Methods 2340 B, Hardness (Total)				04/05/2013 0:00
13040249-004D	LW-DS	04/03/2013 9:25	04/04/2013 8:00		
	EPA 600 4.1.1, 200.7R4.4, Metals by ICP (Dissolved)			04/04/2013 12:19	04/05/2013 5:21
	Standard Methods 3030 B, 3113 B, Metals by GFAA (Dissolved)		04/08/2013 22:45	04/10/2013 12:21
13040249-004E	LW-DS	04/03/2013 9:25	04/04/2013 8:00		
	Standard Methods 5310 C, Organic Carbon				04/04/2013 18:24
13040249-005A	LW-DUP	04/03/2013 0:00	04/04/2013 8:00		
	Standard Methods 2540 D				04/04/2013 14:13
13040249-005B	LW-DUP	04/03/2013 0:00	04/04/2013 8:00		
	EPA 600 375.2 Rev 2.0 1993 (Total)				04/05/2013 18:15
	Standard Method 4500-H B, Laboratory Analyzed				04/05/2013 21:29
13040249-005C	LW-DUP	04/03/2013 0:00	04/04/2013 8:00		
	EPA 600 4.1.4, 200.7R4.4, Metals by ICP (Total)			04/04/2013 19:08	04/05/2013 19:20
	Standard Methods 3030 E, 3113 B, Metals by GFAA			04/05/2013 18:02	04/10/2013 11:23
	Standard Methods 3000 E, 5115 D, Metals by G1717 Standard Methods 2340 B, Hardness (Total)			3.11001201310102	04/05/2013 0:00
13040249-005D	LW-DUP	04/03/2013 0:00	04/04/2013 8:00		
	EPA 600 4.1.1, 200.7R4.4, Metals by ICP (Dissolved)			04/04/2013 12:19	04/05/2013 5:27
	Standard Methods 3030 B, 3113 B, Metals by GFAA (Dissolved)		04/04/2013 12:19	04/10/2013 12:25
13040249-005E	LW-DUP	04/03/2013 0:00	04/04/2013 8:00	54/00/2015 22:45	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					04/04/2012 19:21
	Standard Methods 5310 C, Organic Carbon				04/04/2013 18:31

http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13040249

Client Project: Leadwood Mine Tailings Site NPDES

EPA 600 375.2 RE	V 2.0 1993 (1	(OTAL									
Batch R175513 SampID: MBLK	SampType:	MBLK		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate			10		< 10						04/04/2013
Batch R175513 SampID: LCS	SampType:	LCS		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate			10		19	20	0 .	93.2	90	110	04/04/2013
Batch R175513 SampID: 13040249-	SampType: 004BMS	MS		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate			10	S	29	10	21.03	75.4	90	110	04/04/2013
Batch R175513 SampID: 13040249-	SampType: 004BMSD	MSD		Units mg/L					RPD	Limit 10	Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref	Val %RPD	Analyzed
Sulfate			10	S	27	10	21.03	60.5	28.57	5.35	04/04/2013
Batch R175597 SampID: MBLK	SampType:	MBLK		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate			10		< 10						04/05/2013
Batch R175597 SampID: LCS	SampType:	LCS		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate			10	,	21	20	0	104.6	90	110	04/05/2013
STANDARD METH	IOD 4500-H	B, LAB	ORATO	RY ANALYZEI)						
Batch R175587 SamplD: LCS	SampType:	LCS		Units							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Lab pH			1.00			7.00	0	99.9	99.1	100.8	04/05/2013
Batch R175587 SampID: 13040249-	SampType:	DUP		Units					RPD	Limit 10	
	0000		DI	01	D 1	C '1	SPK Ref Val	%PEC	PPD Poft	Val %RPD	Date Analyzed
Analyses			RL	Qual	Result	Spike	OF KINE Val	MILLO	KED Kel	vai /oneD	

http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13040249

Client Project: Leadwood Mine Tailings Site NPDES

Batch R175654	SampType:	LCS		Units							
SampID: LCS											Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Lab pH			1.00		7.01	7.00	0	100.1	99.1	100.8	04/08/2013
	SampType:	DUP		Units					RPD	Limit 10	
SampID: 13040249-0	001B		DI	Oval	Dogult	Cuilco	SPK Ref Val	%RFC	RPD Ref \	/al %RPD	Date Analyzed
Analyses Lab pH			1.00	Qual	7.93	Spike	Of ICICOI Val	701120	7.850	1.01	04/08/2013
Batch R175654	SampType:	DUP	la Carlo	Units					RPD	Limit 10	
SampID: 13040249-0											Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	Val %RPD	Analyzed
Lab pH			1.00		7.97				7.960	0.13	04/08/2013
Batch R175654 SampID: 13040249-0	SampType:	DUP		Units					RPD	Limit 10	Dete
	J03B		DI	0.1	D 14	G '1.	SPK Ref Val	%PEC	PPD Pof \	Val %RPD	Date Analyzed
Analyses Lab pH			1.00	Qual	7.96	Spike	or it iter var	MILO	7.960	0.00	04/08/2013
Lab pri			1.00		7.50				7.000	0.00	0 1100/2010
Batch R175654 SampID: 13040249-0	SampType: 004B	DUP		Units					RPD	Limit 10	Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	Val %RPD	Analyzed
Lab pH			1.00		8.06				8.080	0.25	04/08/2013
STANDARD METH	ODS 2540 D)									
Batch R175517 SampID: MBLK	SampType:	MBLK		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Total Suspended S	Solids		6		< 6						04/04/2013
Batch R175517 SampID: LCS	SampType:	LCS		Units mg/L							Date
Analyses			RL	Qual	Result	Spike.	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Total Suspended S	olids		6		105	100	0	105.0	85	115	04/04/2013
Total Suspended S		*,	6		103	100	0	103.0	85	115	04/04/2013
Total Suspended S			6		94	100	0	94.0	85	115	04/04/2013
Total Suspended S	Solids		6		93	100	0	93.0	85	115	04/04/2013
Batch R175517 SampID: 13040249-	SampType: 003A-DUP	DUP		Units mg/L					RPD	Limit 15	Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref	Val %RPD	Analyzed
Total Suspended S	Solids		6		< 6				0	0.00	04/04/2013

http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13040249

Client Project: Leadwood Mine Tailings Site NPDES

Batch R175536	SampType:	MBLK		Units mg/L							
SampID: ICB/MBLK											Date
Analyses			RL	Oual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Total Organic Cart	on (TOC)		1.0		< 1.0			30 000 000 000 000 000 000			04/04/2013
Batch R175536 SampID: ICV/LCS	SampType:	LCS		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Total Organic Carb	oon (TOC)		10.0		64.5	59.7	0	108.0	90	110	04/04/2013
Batch R175536 SampID: 13040249-	SampType: 005EMS	MS		Units mg/L							Date
Analyses			RL	Qual	Result	Spike		%REC		High Limit	Analyzed
Total Organic Cart	oon (TOC)		1.0		6.2	5.0	1.430	96.4	85	115	04/04/2013
Batch R175536 SampID: 13040249-	SampType: 005EMSD	MSD		Units mg/L						Limit 10	Date Analyzed
Analyses			RL	Qual			SPK Ref Val			/al %RPD	Carrie Color PD
Total Organic Cart	oon (TOC)		1.0		6.5	5.0	1.430	100.6	6.250	3.30	04/04/2013
EPA 600 4.1.1, 200	Accessed the second second second second		Y ICP (E	DISSOLVED)							
Batch 87071 SampID: MBLK-870	SampType: 71	MBLK		Units µg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val		Low Limit	High Limit	Analyzed
Cadmium			2.00		< 2.00	2.00	0	0	-100	100	04/05/2013
Zinc			10.0		< 10.0	10.0	0	0	-100	100	04/05/2013
Batch 87071 SampID: LCS-8707	SampType:	LCS		Units µg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Cadmium			2.00		45.5	50.0	0	91.0	85	115	04/05/2013
Zinc			10.0		445	500	0	89.1	85	115	04/05/2013
Batch 87071 SampID: 13040249-	SampType: 001DMS	MS		Units µg/L							Date
Analyses			RL	Qual		Spike			20 SHACID BUILD LEAD OF	High Limit	Analyzed
Cadmium			2.00		47.2	50.0	2.6	89.2	75	125	04/05/2013
Zinc			10.0		2620	500	2206	82.8	75	125	04/05/2013
Batch 87071 SampID: 13040249-	SampType: 001DMSD	MSD		Units µg/L					RPD	Limit 20	Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref	Val %RPD	Analyzed
Cadmium			2.00		47.1	50.0	2.6	89.0	47.2	0.21	04/05/2013
Zinc			10.0		2600	500	2206	79.2	2620	0.69	04/05/2013

http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13040249

Client Project: Leadwood Mine Tailings Site NPDES

EPA 600 4.1.4, 200.7R4.4, ME										
Batch 87095 SampType SampID: MBLK-87095	: MBLK		Units µg/L							Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Cadmium		2.00		< 2.00	2.00	0	0	-100	100	04/05/2013
Calcium		50.0		< 50.0	50.0	0	0	-100	100	04/05/2013
Magnesium		10.0		< 10.0	10.0	0	0	-100	100	04/05/2013
Zinc		10.0		< 10.0	10.0	0	0	-100	100	04/05/2013
Batch 87095 SampType SampID: LCS-87095	: LCS		Units µg/L							Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Cadmium		2.00		48.9	50.0	0	97.8	85	115	04/05/2013
Calcium		50.0		1280	1200	0	106.7	85	115	04/05/2013
Magnesium		10.0		762	750	0	101.6	85	115	04/05/2013
Zinc		10.0		469	500	0	93.8	85	115	04/05/2013
Batch 87095 SampType SampID: 13040249-001CMS	: MS		Units µg/L							Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Cadmium		2.00		51.7	50.0	2.9	97.6	75	125	04/05/2013
Calcium		50.0	S	114000	1200	111800	200.0	75	125	04/05/2013
Magnesium		10.0	S	38000	750	36540	190.7	75	125	04/05/2013
Zinc		10.0		3260	500	2677	116.2	75	125	04/05/2013
	SampType: MSD Units µg/L RPD Limit 20									
SampID: 13040249-001CMSD										Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	Val %RPD	Analyzed
Cadmium		2.00		51.9	50.0	2.9	98.0	51.7	0.39	04/05/2013
Calcium		50.0	S	113000	1200	111800	66.7	114200	1.41	04/05/2013
Magnesium		10.0		37400	750	36540	117.3	37970	1.46	04/05/2013
Zinc		10.0		3210	500	2677	107.2	3258	1.39	04/05/2013
STANDARD METHODS 3030	E, 3113	B, MET	ALS BY GFA	4						
Batch 87148 SampType SampID: MBLK-87148	: MBLK		Units µg/L							Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Lead		2.00		< 2.00		0	0	-100	100	04/10/2013
Batch 87148 SampType SampID: LCS-87148	: LCS		Units µg/L							Date
Analyses		RL	Qual	Regult	Snike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Lead		2.00	Quai		15.0	0	98.1	85	115	04/10/2013

http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13040249

Client Project: Leadwood Mine Tailings Site NPDES

Batch 87148 S SampID: 13040249-00	ampType:	MS		Units µg/L							D-4-		
Analyses	201110		RL	Oual	Result	Snike	SPK Ref Val	%REC	Low Limit	High Limit	Date Analyzed		
Lead			2.00	Quai		15.0	10.0792	80.3	70	130	04/10/2013		
Batch 87148 S SampID: 13040249-00	SampType:	MSD		Units µg/L					RPD	Limit 20	Date		
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed		
Lead		4 CO. S. STOCK STO	2.00			15.0	10.0792	99.6	22.1308	12.23	04/10/2013		
STANDARD METHO	DS 3030 B	, 3113	B, META	ALS BY GFAA	(DISSOL	VED)							
Batch 87235 S SampID: MBLK-87235	ampType:	MBLK		Units µg/L							Date		
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed		
Lead			2.00		< 2.00	2.00	0	0	-100	100	04/10/2013		
Batch 87235 S SampID: LCS-87235	SampType:	LCS		Units µg/L							Date		
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed		
Lead			2.00		15.6	15.0	0	103.7	85	115	04/10/2013		
Batch 87235 S SampID: 13040249-00	SampType: 2DMS	MS		Units µg/L							Date		
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed		
Lead			2.00		21.8	15.0	7.3567	96.3	70	130	04/10/2013		
Ditter.	SampType:	MSD Units μg/L						RPD	RPD Limit 20				
SampID: 13040249-00 Analyses	2DMSD		RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref	Val %RPD	Date Analyzed		
Lead			2.00		22.0	15.0	7.3567	97.7	21.8069	0.93	04/10/2013		

Client: Barr Engineering Company

Custody seal(s) intact on shipping container/cooler. TM 4/4/13.

Receiving Check List

http://www.teklabinc.com/

Work Order: 13040249

Report Date: 15-Apr-13 Client Project: Leadwood Mine Tailings Site NPDES Received By: EEP Carrier: Tim Mathis Completed by: Frilo Pole Reviewed by: On: On: 04-Apr-13 04-Apr-13 Emily E. Pohlman Michael L. Austin Extra pages included 0 Pages to follow: Chain of custody No Not Present Temp °C 1.8 Shipping container/cooler in good condition? Yes Blue Ice Dry Ice Type of thermal preservation? None Ice Chain of custody present? Yes No Chain of custody signed when relinquished and received? Yes No Chain of custody agrees with sample labels? Yes No Samples in proper container/bottle? Yes No Sample containers intact? Yes No No Sufficient sample volume for indicated test? Yes No All samples received within holding time? Yes NA Reported field parameters measured: Field Lab 🗸 Container/Temp Blank temperature in compliance? No When thermal preservation is required, samples are compliant with a temperature between 0.1°C - 6.0°C, or when samples are received on ice the same day as collected. No VOA vials Water - at least one vial per sample has zero headspace? No TOX containers Water - TOX containers have zero headspace? No No Water - pH acceptable upon receipt? Yes No NA NPDES/CWA TCN interferences checked/treated in the field? Yes Any No responses must be detailed below or on the COC.

1	3	04	0	2	4	0
1		0	-		•	

			~										_																	30	400	49	
BARR	1001 Di	n of (amond Rid n City, MC	dge, Suite			Tek	lat). II	nc.				Parameters Water Soil												COC 1 of 1								
DAKK	(573) 638-5000 Courier Pick Up							H	Т				T						301	Ή	_	\vdash		Project	t	,							
Project Number: 25860013.00 TLM2 021											1																Manag		Ty Morr	is			
Project Name: Leadwood Mine Tailing Site NPDES																			1#			#7	163.)		Containers	Project							
Sample Originati	on State: N	MO (use to	wo letter	postal sta	te abbreviation)						-	_		Solids							I# (eOH)	ved)		7# (1	, unip		onta	QC Co	ntact:	Andre	a Nord	
COC Number: LV	WP 040313	3												ed So		spi	Carbo	S			(HO9)	(tared MeOH)	preser	erved)	Served	ar All		of	Sample	ed	0. 1		
				D. d				Matrix	I	7	Гуре			rspend		le Solids	tals	d Metal	S		ared N	TE (ta	red un	unpres	ids (nlastic vial	(pre		Number	By: Labora	torv	Teklal	n Moila	nen
Location		Start Depth	Stop Depth	Depth Unit (m./ft. or in.)	Collection Date (mm/dd/yyyy)	Collection Time (hh:mm)	Water	Soil		Grab	Comp	oc oc	Hd.	Total Suspended	Sulfate	Settleable	Total Metals	Dissolved Metals	. Hardness		VOCs (t	GRO, BTE (tared Me	DRO (tared unpreserved)	Metals (% Solide (nlastic vial			Total N	Luoora	tory.	_ rekidi		
1. LW-001	10249 -001				04/03/13	07:45	х		,				х	х	х	x :	x x	x	х									5	Preserv Unpres	atives	: 2 HNO3	3, 1 H2S	04, 2
2. LW-002	-002				04/03/13	08:45	х						х	х	х	x :	x x	x	x									5		atives	: 2 HNO3	, 1 H2S	04, 2
3. LW-US	-003				04/03/13	07:15	х		,				х	х	х	,	x x	x	x						T			5		atives	: 2 HNO3	, 1 H2S	04, 2
4. LW-DS	7004				04/03/13	09:25	х		,				х	х	x	,	x x	X	х						T		1	5		atives:	2 HNO3	, 1 H2S	04, 2
5.LW-DUP	-005				04/03/13	**;**	х		,				х	x	х	,	x x	x	X								7	5		atives:	2 HNO3	, 1 H2S	04, 2
6.																							T				1		Chpress	rved			
7.																							1	1	T		1						
8.					·				T													1	T	Ť		П	1						
Comments: Invoice at Doe Run. Matrix is surface vertical metals include Care	water.			ın. Resul			(aold	ls@bar	r.con) at	Barr	Eng	inec	ering	, An	drea	No	rd (a	inorc	l@bar	r.co	m) a	t Ba	rr E	ngin	neerin	ng, a	and M	ark Natio	ons (m	nations@	doerun.	com)
Common Parame				Key	Relinquished B	y: Str	Un	W	L	On ZIY	Ice?		Ų. Da	3- ite:	13	Т	16'.	OC	7	Recei	ved	by:	7	1	1	4	4		Date:	14	Time	06	

- #1 Volatile Organics = BTEX, GRO, TPH, 8260 Full List #2 - Semivolatile Organics = PAHs, PCP, Dioxins, 8270
- Full List, Herbicide/Pesticide, PCBs
- #3 General = pH, Chloride, Fluoride, Alkalinity, TSS, TDS, TS, Sulfate
- #4 Nutrients = COD, TOC, Phenols, Ammonia Nitrogen, TKN

Relinquished By:		11.5	1 1 2 2 2			
Stephen Moilager Man	On Ice? ☑Y □N	Date:	Time:	Received by:	Date: A. A. 13	Time: a/a>
Relinquished By:				10/	1713	Time: 0630
	On Ice? ☑Y ☐N	Date 4.13	Time:0~	Received by: Sul M	Date: /L//	Time:
Samples Shipped VIA: Air Freight DI	ederal Express	Sampler		Air Bill Number:		08,00
NO Cother: Com	rier Pi	ckuc				
	4.4.13		1	Curant Sens	CT TOO I	>

Distribution: White - Original Accompanies Shipment to Lab; Yellow - Field Copy; Pink - Lab Coordinator